

Process	Burst time	Priority		
P1	10	3		
P ₂	1	1		
P ₃	2	3		
P ₄	1	4		
P ₅	5	2		

The processes are assumed to have arrived in the order P₁, P₂, P₃, P₄, P₅ all at time 0. Draw 4 Gantt charts that illustrates the execution of these processes using the following scheduling algorithms: FCFS, SJF non preemptive priority (smaller priority number implies a higher priority) and RR (quantum = 1). What is the average turnaround time and waiting time for each of these scheduling algorithms? (14 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 of 2

18CS654

- b. Differentiate the following with examples:
 - i) Preemptive and non-preemptive scheduling.
 - ii) I/O bound and cpu bound
 - iii) Scheduler and dispatcher.

(06 Marks)

Module-4

a. Define dead lock. Write a note on 4 necessary conditions that arise dead locks. (06 Marks)
b. Assume that there are 5 processes P₀ through P₄ and 4 types of resources. At time T₀ we have the following state.

S state.)						- /	
Process	Allocation			Max			Available					
	Α	В	C	D	Α	В	С	D	Α	В	С	D
P ₀	0	0	1	2	0	0	1	2	1	v 5	2	0
P ₁	1	0	0	0	1	7	5	0	2			
P ₂	1	3	5	4	2	3	5	6				
P ₃	0	6	3	2	0	6	5	2				
P ₄	0	0	1	4	0	6	5	6				

Apply Bankers algorithm to answer the following:

- i) What is the content of need matrix?
- ii) Is the system in a safe state?

iii) If a request from a process $P_1(0, 4, 2, 0)$ arrives, can it be granted?

c. Write a note on "safe state".

OR

8 a. Write short notes on:

7

- i) External and Internal fragmentation.
- ii) Dynamic loading and linking.
- b. Given memory partitions of 100K, 500K, 200K, 300K and 600K (in order), how would each of the first-fit, best-fit and worst-fit algorithms place processes of 212K, 417K, 112K and 426K (in order) which algorithm makes the most efficient use of memory. (06 Marks)
- c. Explain with the help of supporting hardware diagram. How the TLB improves the performance of a demand paging system. (08 Marks)

Module-5

9 a. Explain virtual memory and its advantages.(06 Marks)b. What is the procedure for handling page fault with a neat block diagram?(08 Marks)c. Write a note on copy-on-write.(06 Marks)

OR

10a. What are the typical attributes of a file?(06 Marks)b. Define operations that can be performed on files.(06 Marks)c. Explain various access methods of files.(08 Marks)

2 of 2

06 Martra)

(08 Marks)

(06 Marks)

(06 Marks)